Wednesday 29 November 2017

Przykład ważności ważonego przewijania do średniej prognozy


Przenoszenie średnich i wykładniczych modeli wygładzania Jako pierwszy krok w wykraczaniu poza modele średnie, losowe oraz modele liniowych trendów, nieuzasadnione wzorce i trendy mogą być ekstrapolowane za pomocą modelu ruchomego średniego lub wygładzającego. Podstawowym założeniem za modelami uśredniania i wygładzania jest to, że szereg czasowy jest lokalnie stacjonarny, a powoli zmienia się średnio. W związku z tym bierzemy ruchomą (lokalną) średnią w celu oszacowania bieżącej wartości średniej, a następnie użyć jej jako prognozy na najbliższą przyszłość. Można to uznać za kompromis między średnim modelem a modelem losowego chodzenia bez dryfu. Ta sama strategia może być wykorzystana do oszacowania i ekstrapolacji lokalnego trendu. Średnia ruchoma jest często określana jako quotsmoothedquot wersja pierwotnej serii, ponieważ uśrednianie krótkotrwałe ma efekt wygładzania uderzeń w oryginalnej serii. Dostosowując stopień wygładzania (szerokość średniej ruchomej), możemy mieć nadzieję na osiągnięcie jakiegoś optymalnego balansu między osiągnięciem modelu średniej i losowej. Najprostszym modelem uśredniania jest. Prosta (równoważona wagą) Średnia ruchoma: Prognoza dla wartości Y w czasie t1, która jest wykonana w czasie t równa się zwykłej średniej z ostatnich obserwacji m: (Tutaj i gdzie indziej będę używać symbolu 8220Y-hat8221 dla prognozowania serii czasowej Y dokonanej najwcześniej w poprzednim terminie przez dany model). Ta średnia jest wyśrodkowana w okresie t - (m1) 2, co oznacza, że ​​oszacowanie lokalnej średniej będzie miało tendencję do opóźnienia w stosunku do prawdziwych wartość lokalnej średniej o około (m1) 2 okresów. Tak więc mówimy, że średni wiek danych w prostej średniej ruchomej wynosi (m1) 2 w stosunku do okresu, na który obliczana jest prognoza: jest to ilość czasu, w jakim prognozy będą się spóźniały za punktami zwrotnymi w danych . Na przykład, jeśli uśrednimy ostatnie 5 wartości, prognozy będą wynosić około 3 okresy późne w odpowiedzi na punkty zwrotne. Zauważ, że jeśli m1, model prostego ruchu średniego (SMA) odpowiada modelowi losowego chodzenia (bez wzrostu). Jeśli m jest bardzo duża (porównywalna z długością okresu szacowania), model SMA jest równoważny średniemu modelowi. Podobnie jak w przypadku dowolnego parametru modelu prognozowania, zwykle dostosowywana jest wartość k w celu uzyskania najlepszej jakości danych, tzn. Najmniejszych średnich błędów prognozy. Oto przykład serii, która wydaje się wykazywać losowe fluktuacje wokół średniej wolno zmieniającej. Po pierwsze, spróbuj dopasować go do modelu przypadkowego spaceru, co odpowiada prostej średniej ruchomej z jednej kadencji: model losowego spaceru reaguje bardzo szybko na zmiany w serii, ale w ten sposób robi to znacznie pobudzając kwintesencję dane (losowe fluktuacje), jak również kwotsignalquot (lokalna średnia). Jeśli weźmiemy pod uwagę prostą średnią ruchomą wynoszącą 5 terminów, otrzymamy gładszy zestaw prognoz: 5-letnia prosta średnia ruchoma daje w tym przypadku znacznie mniejsze błędy niż model losowego chodu. Przeciętny wiek danych w tej prognozie wynosi 3 ((51) 2), co oznacza, że ​​ma tendencję do pozostawania za punktami zwrotnymi przez około trzy okresy. (Na przykład spadek koniunktury wydaje się występować w okresie 21, ale prognozy nie odwracają się do kilku okresów później). Zauważ, że długoterminowe prognozy modelu SMA to poziome linie proste, podobnie jak w przypadku losowego spaceru Model. Tak więc, model SMA zakłada, że ​​nie ma tendencji w danych. Jednakże, mając na uwadze, że prognozy z modelu losowego spaceru są po prostu równoważne ostatniej obserwowanej wartości, prognozy z modelu SMA są równe średniej ważonej ostatnich wartości. Ograniczenia ufności obliczone przez Statgraphics w odniesieniu do długoterminowych prognoz dotyczących prostej średniej ruchomej nie są szersze, gdy horyzont prognoz wzrasta. To oczywiście nie jest poprawne Niestety, nie ma podstawowej teorii statystycznej, która mówi nam, w jaki sposób przedziały ufności powinny poszerzać się w tym modelu. Nie jest jednak zbyt trudno obliczyć empirycznych szacunków dopuszczalnych granic dla prognoz długoterminowych. Na przykład można utworzyć arkusz kalkulacyjny, w którym model SMA byłby wykorzystywany do prognozowania 2 kroków naprzód, 3 kroków naprzód itp. W ramach historycznej próbki danych. Następnie można obliczyć próbkowe odchylenia standardowe błędów w każdym horyzoncie prognozy, a następnie skonstruować interwały zaufania dla prognoz długoterminowych przez dodawanie i odejmowanie wielokrotności odpowiedniego odchylenia standardowego. Jeśli będziemy próbować 9-letniej prostej średniej ruchomej, otrzymamy jeszcze gładsze prognozy i bardziej opóźniamy: średni wiek wynosi teraz 5 okresów ((91) 2). Jeśli weźmiemy 19-letnią średnią ruchliwą, średni wiek wzrośnie do 10: Zauważ, że prognozy są już za punktami zwrotnymi o około 10 okresów. Która suma wygładzania jest najlepsza dla tej serii Poniżej znajduje się tabela porównująca ich statystykę błędów, w tym również średnia 3-letnia: Model C, 5-letnia średnia ruchoma, daje najniższą wartość RMSE przez mały margines w ciągu 3 średnie i średnie 9-dniowe oraz inne statystyki są niemal identyczne. Wśród modeli o bardzo podobnych statystykach błędów możemy wybrać, czy wolelibyśmy nieco lepiej reagować lub trochę bardziej sprawnie. (Powtórz początek strony). Browns Simple Exponential Smoothing (średnia wykładana ważona średnią ruchoma) Opisany wyżej prosty model średniej średniej ma niepożądaną właściwość, która traktuje ostatnie obserwacje równomiernie i całkowicie ignoruje wszystkie poprzednie obserwacje. Intuicyjnie dane z przeszłości powinny być dyskontowane w sposób bardziej stopniowy - na przykład ostatnie obserwacje powinny mieć nieco więcej niż druga ostatnia, a druga ostatnia powinna być nieco większa niż ostatnia z trzech, a wkrótce. Dokonuje tego prostokątny wygładzający (SES). Niech 945 oznacza stałą kwotową konsystencji (liczba między 0 a 1). Jednym ze sposobów zapisania modelu jest zdefiniowanie serii L, która reprezentuje aktualny poziom (tzn. Średnia wartość lokalna) szeregu szacowana na podstawie danych do dnia dzisiejszego. Wartość L w czasie t obliczana jest rekurencyjnie z własnej poprzedniej wartości: W ten sposób bieżąca wygładzona wartość jest interpolacją pomiędzy poprzednią wygładzoną wartością a bieżącą obserwacją, gdzie 945 kontroluje bliskość interpolowanej wartości do najnowszej obserwacja. Prognoza na następny okres jest po prostu aktualną wygładzoną wartością: równoważnie możemy wyrazić następną prognozę bezpośrednio w odniesieniu do poprzednich prognoz i wcześniejszych obserwacji w dowolnej z następujących równoważnych wersji. W pierwszej wersji prognoza jest interpolacją między poprzednią prognozą a poprzednią obserwacją: w drugiej wersji następna prognoza uzyskuje się przez dostosowanie poprzedniej prognozy w kierunku poprzedniego błędu w ułamkowej wartości 945. jest błędem dokonanym w czas t. W trzecim projekcie prognoza jest średnią ruchoma ważoną wykładnicą (tzn. Zdyskontowaną) z współczynnikiem dyskontowania 1 - 945: wersja interpolacyjna formuły prognozowania jest najprostszym sposobem użycia, jeśli model implementuje model w arkuszu kalkulacyjnym: jest on dopasowany do pojedynczą komórkę i zawiera odwołania do komórek wskazujące na poprzednią prognozę, wcześniejsze obserwacje oraz komórkę, w której przechowywana jest wartość 945. Zauważ, że jeśli 945 1, model SES jest równoważny modelowi losowego spaceru (bez wzrostu). Jeśli 945 0, model SES jest odpowiednikiem średniego modelu, zakładając, że pierwsza wygładzona wartość jest równa średniej. (Powrót na górę strony.) Przeciętny wiek danych w prognozie wygładzania według wykładników prostych i wykładniczych wynosi 1 945 w stosunku do okresu, w którym obliczana jest prognoza. (Nie powinno to być oczywiste, ale można to łatwo wykazać przez ocenę nieskończonej serii). W związku z tym, prosta średnia ruchoma przebiega za punktami zwrotnymi przez około 1 945 okresów. Na przykład, gdy 945 0,5 opóźnienie wynosi 2 okresy, gdy 945 0,2 opóźnienie wynosi 5 okresów, gdy 945 0,1 opóźnienie wynosi 10 okresów itp. Dla pewnego przeciętnego wieku (czyli ilości opóźnień), prosta prognoza wygładzania wykładniczego (SES) jest nieco lepsza od prognozy SMA (Simple moving average), ponieważ w ostatniej obserwacji obserwuje się relatywnie większą wagę. jest nieco bardziej odpowiadający na zmiany zachodzące w niedawnej przeszłości. Na przykład model SMA z 9 terminami i model SES z 945 0.2 mają średni wiek 5 lat dla danych w swoich prognozach, ale model SES daje większą wagę w stosunku do ostatnich 3 wartości niż model SMA i na poziomie w tym samym czasie nie robi nic 8220forget8221 o wartościach powyżej 9 okresów, jak pokazano na poniższym wykresie: Inną ważną zaletą modelu SES w modelu SMA jest to, że model SES wykorzystuje parametr wygładzania, który jest ciągle zmienny, dzięki czemu można z łatwością zoptymalizować za pomocą algorytmu quotsolverquot w celu zminimalizowania średniego kwadratu. Optymalna wartość 945 w modelu SES dla tej serii okazała się wynosić 0.2961, jak pokazano poniżej: średni wiek danych w tej prognozie to 10.2961 3.4 okresy, które są podobne do średniej 6-letniej prostej średniej ruchomej. Długoterminowe prognozy z modelu SES są poziomej prostej. jak w modelu SMA i modelu przypadkowego spacerowania bez wzrostu. Należy jednak pamiętać, że przedziały ufności obliczane przez Statgraphics różnią się w rozsądny sposób i że są one znacznie węższe niż przedziały ufności dla modelu losowego spaceru. Model SES zakłada, że ​​seria jest nieco bardziej przewidywalna niż model losowego chodu. Model SES jest faktycznie szczególnym przypadkiem modelu ARIMA. tak więc statystyczna teoria modeli ARIMA stanowi solidną podstawę do obliczania przedziałów ufności dla modelu SES. W szczególności model SES jest modelem ARIMA z odmienną różnicą, terminem MA (1), a nie określonym terminem. inaczej znany jako model quotARIMA (0,1,1) bez stałej ilości. Współczynnik MA (1) w modelu ARIMA odpowiada ilościowi 1- 945 w modelu SES. Na przykład, jeśli dopasujesz model ARIMA (0,1,1) bez stałej do analizowanej serii, szacowany współczynnik MA (1) okazuje się wynosić 0.7029, czyli prawie dokładnie minus minus 0.2961. Możliwe jest dodanie założenia niezerowej stałej tendencji liniowej do modelu SES. W tym celu wystarczy podać model ARIMA z jedną różniczkową różnicą i terminem MA (1) ze stałą, tj. Model ARIMA (0,1,1) ze stałą. Prognozy długoterminowe będą wtedy miały tendencję, która jest równa średniej tendencji obserwowanej w całym okresie szacunkowym. Nie można tego zrobić w połączeniu z dostosowaniem sezonowym, ponieważ opcje dostosowania sezonowego są wyłączone, gdy typ modelu jest ustawiony na ARIMA. Można jednak dodać stałą długoterminową tendencję wykładniczą do prostego modelu wygładzania wykładniczego (z korektą sezonową lub bez), korzystając z opcji regulacji inflacji w procedurze prognozowania. Odpowiednia szybkość wzrostu kwotowania (stopa wzrostu procentowego) w danym okresie może być oszacowana jako współczynnik nachylenia w modelu liniowego tendencji dopasowany do danych w połączeniu z naturalną transformacją logarytmiczną lub może opierać się na innych, niezależnych informacjach dotyczących długoterminowych perspektyw wzrostu . (Powrót na początek strony). Browns Linear (tj. Podwójne) Wyrównywanie wykładnicze Modele SMA i modele SES zakładają, że w danych nie ma żadnego trendu (co zwykle jest OK lub przynajmniej nie jest zbyt złe dla 1- prognozy stopniowe, gdy dane są stosunkowo hałaśliwe) i można je zmodyfikować, aby uwzględnić stały trend liniowy, jak pokazano powyżej. Co z trendami krótkoterminowymi Jeśli seria wykazuje zróżnicowaną stopę wzrostu lub cykliczny wzór wyraźnie wyróżniający się w stosunku do hałasu, a jeśli istnieje potrzeba prognozowania więcej niż jednego okresu, szacunek lokalnej tendencji może być również problem. Prosty model wygładzania wykładniczego można uogólnić w celu uzyskania liniowego modelu wygładzania wykładniczego (LES), który oblicza lokalne szacunki zarówno poziomu, jak i tendencji. Najprostszym modelem trendów jest Browns liniowy model wygładzania wykładniczego, który wykorzystuje dwie różne wygładzone serie, które są wyśrodkowane w różnych punktach w czasie. Formuła prognozy opiera się na ekstrapolacji linii przez dwa centra. (Poniżej omówiono bardziej wyrafinowaną wersję tego modelu, Holt8217). Algorytm liniowy linearyzacji Brown8217s, podobny do prostokątnego modelu wygładzania, może być wyrażony w wielu różnych, ale równoważnych formach. Niewątpliwą formą tego modelu jest zwykle wyrażona w następujący sposób: Niech S oznacza pojedynczo wygładzoną serię otrzymaną przez zastosowanie prostego wygładzania wykładniczego do serii Y. Oznacza to, że wartość S w okresie t jest wyrażona przez: (Przypomnijmy, że według prostego wyrównywanie wykładnicze, to byłaby prognoza dla Y w okresie t1). Pozwólmy Squot oznaczać podwójnie wygładzoną serię otrzymaną przez zastosowanie prostego wygładzania wykładniczego (przy użyciu tego samego 945) do serii S: Wreszcie prognoza dla Y tk. dla każdego kgt1, podaje: Otrzymuje e 1 0 (to znaczy trochę oszukiwać, a pierwsza prognoza jest równa faktycznej pierwszej obserwacji) i e 2 Y 2 8211 Y 1. po których generowane są prognozy przy użyciu powyższego wzoru. Daje to takie same wartości, jak wzór na podstawie S i S, jeśli te ostatnie zostały uruchomione przy użyciu S 1 S 1 Y 1. Ta wersja modelu jest używana na następnej stronie, która ilustruje kombinację wygładzania wykładniczego z dostosowaniem sezonowym. Model LES firmy Holt8217s oblicza lokalny szacunek poziomu i trendu, wygładając ostatnie dane, ale fakt, że wykonuje to za pomocą pojedynczego parametru wygładzania, ogranicza wzorce danych, które można dopasować: poziom i trend nie mogą zmieniać się w niezależnych stawkach. Model LES firmy Holt8217s rozwiązuje ten problem przez uwzględnienie dwóch stałych wygładzania, po jednym dla poziomu i jednego dla tego trendu. W dowolnym momencie t, podobnie jak w modelu Brown8217s, szacuje się, że na poziomie lokalnym jest szacunkowa t t lokalnego trendu. Tu są obliczane rekurencyjnie z wartości Y obserwowanej w czasie t oraz poprzednich szacunków poziomu i tendencji przez dwa równania, które nakładają na siebie wyrównywanie wykładnicze. Jeśli szacowany poziom i tendencja w czasie t-1 to L t82091 i T t-1. odpowiednio, wówczas prognoza dla Y tshy, która została dokonana w czasie t-1, jest równa L t-1 T t-1. Gdy rzeczywista wartość jest zaobserwowana, zaktualizowany szacunek poziomu jest obliczany rekurencyjnie przez interpolowanie pomiędzy Y tshy a jego prognozą, L t-1 T t-1, przy użyciu odważników 945 i 1 945. Zmiana szacowanego poziomu, mianowicie L t 8209 L t82091. można interpretować jako hałasujący pomiar tendencji w czasie t. Zaktualizowane oszacowanie trendu jest następnie obliczane rekurencyjnie przez interpolowanie pomiędzy L t 8209 L t82091 a poprzednim oszacowaniem tendencji T t-1. przy użyciu odważników 946 i 1-946: Interpretacja stałej 946 wyrównania tendencji jest analogiczna do stałej stymulacji 945. Modele o małych wartościach 946 zakładają, że tendencja zmienia się bardzo powoli w czasie, podczas gdy modele z większy rozmiar 946 zakłada, że ​​zmienia się szybciej. Model z dużą liczbą 946 uważa, że ​​dalsza przyszłość jest bardzo niepewna, ponieważ błędy w oszacowaniu tendencji stają się bardzo ważne, gdy prognozuje się więcej niż jeden rok. (Powrót na początek strony). Stałe wygładzania 945 i 946 można oszacować w zwykły sposób minimalizując średnie kwadratowe błędy prognoz na jeden etap. Gdy to nastąpi w Statgraphics, szacunki wyniosły 945 0,3048 i 946 0,008. Bardzo mała wartość 946 oznacza, że ​​model zakłada bardzo niewielką zmianę tendencji z jednego okresu do następnego, więc w zasadzie ten model próbuje oszacować długoterminowy trend. Przez analogię do pojęcia średniego wieku danych używanych do oszacowania lokalnego poziomu szeregu, średni wiek danych wykorzystywanych do oszacowania tendencji lokalnej jest proporcjonalny do 1 946, chociaż nie jest dokładnie taki sam . W tym przypadku okazuje się, że jest to 10.006 125. Jest to bardzo dokładna liczba, ponieważ dokładność szacowania 946 isn8217t rzeczywiście wynosi 3 miejsca po przecinku, ale ma ten sam ogólny porządek wielkości co rozmiar próbki 100, więc ten model uśrednia wiele historii w szacowaniu tendencji. Poniższa wykres prognozuje, że model LES szacuje nieco większą tendencję lokalną na końcu serii niż stała tendencja szacowana w modelu SEStrend. Ponadto szacowana wartość 945 jest niemal identyczna z uzyskaną przez dopasowanie modelu SES do trendu lub bez, więc jest to prawie ten sam model. Teraz wyglądają jak rozsądne prognozy modelu, które ma oszacować trend lokalny Jeśli wygląda to na wykresie, wygląda na to, że lokalny trend spadł na koniec serii Co się stało Parametry tego modelu zostały oszacowane przez zminimalizowanie kwadratu błędów prognoz na jeden etap, a nie prognoz długoterminowych, w których to przypadku tendencja ta ma wiele różnic. Jeśli wszystko, na co patrzysz, to błędy z jednopodstawowym wyprzedzeniem, nie widzisz większego obrazu trendów w ciągu 10 lub 20 okresów (powiedzmy). Aby uzyskać ten model bardziej zgodny z naszą ekstrapolacją danych oczu, możemy ręcznie dostosować stałą wygładzania trendu, tak aby używała krótszej linii odniesienia dla szacowania tendencji. Na przykład, jeśli zdecydujemy się ustawić 946 0.1, średni wiek danych wykorzystywanych do oszacowania tendencji lokalnej wynosi 10 okresów, co oznacza, że ​​uśrednimy tendencję w ciągu ostatnich 20 okresów. Here8217s jak wygląda prognoza wykresu, jeśli ustawimy 946 0.1 przy zachowaniu 945 0.3. To wydaje się intuicyjnie rozsądne w tej serii, chociaż najprawdopodobniej jest to niebezpieczne, aby wyliczyć tę tendencję w przyszłości o więcej niż 10 okresów. Co ze statystykami o błędach Oto porównanie modelu dwóch modeli przedstawionych powyżej oraz trzech modeli SES. Optymalna wartość 945 dla modelu SES wynosi około 0,3, ale uzyskuje się podobne wyniki (z nieco większą lub mniejszą reakcją) przy 0,5 i 0,2. (A) Holts liniowy exp. wygładzanie z alfa 0,3048 i beta 0,008 (B) liniowe liniowe exp. wygładzanie za pomocą alfa 0.3 i beta 0.1 (C) proste wyrównywanie wykładnicze z alfa 0.5 (D) proste wyrównywanie wykładnicze z alfa 0.3 (E) proste wyrównywanie wykładnicze z alfa 0.2 ich statystyka jest prawie identyczna, więc naprawdę możemy8217t dokonać wyboru na podstawie Błędy prognozy dotyczące etapu wyprzedzania w ramach próbki danych. Musimy pogodzić się z innymi względami. Jeśli uważamy, że sensowne jest oparcie bieżącej tendencji szacunkowej na to, co wydarzyło się w ciągu ostatnich 20 okresów, możemy zrobić przypadek modelu LES z 945 0,3 i 946 0,1. Jeśli chcemy być agnostyczni, czy istnieje tendencja lokalna, jeden z modeli SES może być łatwiejszy do wyjaśnienia, a także dałby więcej prognoz średniej wielkości na najbliższe 5 lub 10 okresów. (Powrót na początek strony.) Który typ ekstrapolacji tendencji jest najlepszy: poziomy lub liniowy Dane empiryczne sugerują, że jeśli dane zostały już skorygowane (jeśli to konieczne) dla inflacji, może to być nieostrożne, jeśli chodzi o ekstrapolację krótkoterminowych liniowych trendy bardzo daleko w przyszłość. Trendy widoczne dziś mogą się spowolnić w przyszłości ze względu na różne przyczyny, takie jak nieaktualność produktu, zwiększona konkurencja i cykliczne spowolnienie gospodarcze lub wzrost w przemyśle. Z tego powodu prosty wygładzanie wykładnicze często wykonuje lepszą próbę poza próbą niż oczekiwano inaczej, pomimo ekstrapolacji tendencji poziomej. Często w praktyce często stosuje się modyfikacje trendu tłumiącego liniowego modelu wygładzania wykładniczego, aby w praktyce wprowadzić do konserwacji swój zapis konserwatyzmu. Model "LES" z tendencjami tłumionymi może być realizowany jako szczególny przypadek modelu ARIMA, w szczególności modelu ARIMA (1,1,2). Możliwe jest obliczanie przedziałów ufności wokół prognoz długoterminowych wytworzonych przez wykładnicze modele wygładzania, biorąc pod uwagę je jako szczególne przypadki modeli ARIMA. (Uwaga: nie wszystkie programy obliczają prawidłowe przedziały ufności dla tych modeli.) Szerokość przedziałów ufności zależy od (i) błędu RMS modelu, (ii) rodzaju wygładzania (prostego lub liniowego) (iii) wartości (-ów) wygładzania (a) i (iv) liczbę prognozowanych okresów. Ogólnie rzecz biorąc, odstępy czasowe rozciągają się szybciej, gdy 945 staje się większe w modelu SES i rozciągają się znacznie szybciej, gdy stosuje się linearne, a nie proste wygładzanie. Ten temat jest omówiony w dalszej części sekcji ARIMA w uwagach. (Powróć na początek strony.) Przykłady prognozowania obliczeń A.1 Metody obliczania prognozy Dostępne są 12 metod obliczania prognoz. Większość z tych metod zapewnia ograniczoną kontrolę nad użytkownikami. Na przykład można określić wagę umieszczoną na ostatnich danych historycznych lub zakres danych daty używanych w obliczeniach. Następujące przykłady przedstawiają procedurę obliczania dla każdego z dostępnych metod prognozowania, biorąc pod uwagę identyczny zestaw danych historycznych. Poniższe przykłady wykorzystują takie same dane o sprzedaży w 2004 i 2005 roku, aby uzyskać prognozę sprzedaży w 2006 roku. Obok przewidywanej kalkulacji, każdy przykład zawiera symulowaną prognozę dla okresu trzymiesięcznego okresu rozliczeniowego (opcja 193), która jest następnie wykorzystywana do procentu dokładności i średnich odchyleń bezwzględnych (rzeczywiste obroty w porównaniu z prognozą symulowaną). A.2 Prognoza wyników Kryteria W zależności od wyboru opcji przetwarzania oraz tendencji i wzorców istniejących w danych o sprzedaży, niektóre metody prognozowania będą działać lepiej niż inne dla danego zbioru danych historycznych. Metoda prognozowania odpowiednia dla jednego produktu może być nieodpowiednia dla innego produktu. Jest mało prawdopodobne, aby metoda prognozowania zapewniająca dobre wyniki w jednym etapie cyklu życia produktu pozostanie właściwa przez cały cykl życia. Można wybrać jedną z dwóch metod oceny bieżącej skuteczności metod prognozowania. Są to średnie odchylenia bezwzględne (MAD) i procent dokładności (POA). Obie te metody oceny skuteczności wymagają historycznych danych dotyczących sprzedaży dla określonego przez użytkownika okresu. Ten okres czasu nazywa się okresem holdout lub period best fit (PBF). Dane w tym okresie są wykorzystywane jako podstawa do rekomendowania, które z metod prognozowania będą wykorzystywane przy przygotowywaniu kolejnej prognozy prognozy. To zalecenie jest specyficzne dla każdego produktu i może się zmieniać z jednego generowania prognozy do następnego. Obydwa prognozowane metody oceny skuteczności są przedstawione na stronach następujących przykładów dwunastu metod prognozowania. A.3 Metoda 1 - Określony Procent W porównaniu z poprzednim rokiem Ta metoda pomnożona przez dane z poprzedniego roku o współczynnik określony przez użytkownika, na przykład o 1,10 dla 10 lub o 0,97 dla trzech obniżek. Wymagana historia sprzedaży: rok do obliczenia prognozy plus określona przez użytkownika liczba okresów czasu dla oceny prognozy (opcja 19). A.4.1 Prognoza Kalkulacja Zakres historii sprzedaży do wykorzystania przy obliczaniu współczynnika wzrostu (opcja przetwarzania 2a) 3 w tym przykładzie. Suma trzech miesięcy 2005 r .: 114 119 137 370 Suma tych samych trzech miesięcy w roku poprzednim: 123 139 133 395 Obliczony współczynnik 370395 0,9367 Oblicz prognozy: styczeń 2005 r. Sprzedaż 128 0,9367 119,8036 lub około 120 lutego 2005 r. Sprzedaż 117 0.9367 109.5939 lub około 110 marca 2005 r. Sprzedaż 115 0.9367 107.7205 lub około 108 A.4.2 Symulowany obliczenia prognozy Suma trzech miesięcy 2005 r. Przed okresem utrzymywania rezerwy (lipiec, sierpień, wrzesień): 129 140 131 400 Suma tych samych trzech miesięcy dla poprzedni rok: 141 128 118 387 Obliczony współczynnik 400387 1.033591731 Oblicz prognozę symulacji: październik 2004 r. sprzedaż 123 1.033591731 127.13178 listopad 2004 r. sprzedaż 139 1.033591731 143.66925 grudzień 2004 r. sprzedaż 133 1.033591731 137.4677 A.4.3 Procent dokładności Obliczenia POA (127.13178 143.66925 137.4677) (114 119 137) 100 408.26873 370 100 110.3429 A.4.4 Średnia obliczalność odchylenia bezwzględnego MAD (127.13178 - 114 143.66925 - 119 137.4677 - 137) 3 (13.13178 24.66925 0.4677) 3 12.75624 A.5 Metoda 3 - W ubiegłym roku do tego roku Ta metoda kopiuje dane sprzedaży z poprzedniego roku na następny rok. Wymagana historia sprzedaży: rok do obliczenia prognozy wraz z liczbą okresów czasu wyznaczonych do oceny prognozy (opcja 19). A.6.1 Prognoza Obliczanie Liczba okresów, które należy uwzględnić w średniej (opcja przetwarzania 4a) 3 w tym przykładzie Dla każdego miesiąca prognozy, średnie dane z poprzednich trzech miesięcy. Prognoza stycznia: 114 119 137 370, 370 3 123.333 lub 123 lutego prognoza: 119 137 123 379, 379 3 126.333 lub 126 Marzec prognoza: 137 123 126 379, 386 3 128.667 lub 129 A.6.2 Symulowana prognoza Obliczanie sprzedaży październik 2005 (129 140 133) 3 133.3333 listopad 2005 sprzedaż (140 131 114) 3 128.3333 grudzień 2005 sprzedaż (131 114 119) 3 121.3333 A.6.3 Procent dokładności Obliczenia POA (133.3333 128.3333 121.3333) (114 119 137) 100 103.513 A.6.4 Średni bezwzględny Obliczanie odchylenia MAD (133.3333 - 114 128.3333 - 119 121.3333 - 137) 3 14.7777 A.7 Metoda 5 - Przybliżenie liniowe Zbliżenie liniowe oblicza trend w oparciu o dwa punkty danych historii sprzedaży. Te dwa punkty definiują prostą linię trendu przewidzianą w przyszłości. Użyj tej metody z ostrożnością, ponieważ długie prognozy są wykorzystywane przez małe zmiany w zaledwie dwóch punktach danych. Wymagana historia sprzedaży: liczba okresów uwzględnienia w regresji (opcja przetwarzania 5a) plus 1 plus liczba okresów oceny wyników prognozy (opcja 19). A.8.1 Prognoza Obliczanie Liczba okresów uwzględnienia w regresji (opcja przetwarzania 6a) 3 w tym przykładzie Dla każdego miesiąca prognozy dodaj wzrost lub spadek w określonych przedziałach czasu przed okresem holdout poprzedniego okresu. Średnia z poprzednich trzech miesięcy (114 119 137) 3 123.3333 Podsumowanie ostatnich trzech miesięcy z uwzględnieniem ciężaru (114 1) (119 2) (137 3) 763 Różnica między wartościami 763 - 123.3333 (1 2 3) 23 Stosunek ( 12 22 32) - 2 3 14 - 12 2 Wartość1 RóżnicaRatio 232 11.5 Wartość2 Wartość średnia - wartość1 123.3333 - 11.5 2 100.3333 Prognoza (1 n) wartość value1 4 4 11.5 100.3333 146.333 lub 146 Prognoza 5 11.5 100.3333 157.8333 lub 158 Prognoza 6 11.5 100.3333 169.3333 lub 169 A.8.2 Symulowana prognoza Prognoza sprzedaży października 2004: Średnia z poprzednich trzech miesięcy (129 140 131) 3 133.3333 Podsumowanie ostatnich trzech miesięcy z uwzględnieniem ciężaru (129 1) (140 2) (131 3) 802 Różnica między Wartości 802 - 133.3333 (1 2 3) 2 Stosunek (12 22 32) - 2 3 14 - 12 2 Wartość1 RóżnicaRozwój 22 1 Wartość2 Średnia - wartość1 133.3333 - 1 2 131.3333 Prognoza (1 n) Wartość1 Wartość2 4 1 131.3333 135.3333 Listopad 2004 obroty Średnia z poprzednich trzech miesięcy (140 131 114) 3 128.3333 Podsumowanie ostatnich trzech miesięcy z uwzględnieniem ciężaru (140 1) (131 2) (114 3) 744 Różnica między wartościami 744 - 128.3333 (1 2 3) -25.9999 Wartość1 RóżnicaRatio -25.99992 -12.9999 Wartość2 Wskaźnik średniej wartości 1 128.3333 - (-12.9999) 2 154.3333 Prognoza 4 -12.9999 154.3333 102.3333 Sprzedaż w grudniu 2004 średnia z poprzednich trzech miesięcy (131 114 119) 3 121.3333 Podsumowanie ostatnich trzech miesięcy z uwzględnieniem ciężaru ( 131 1) (114 2) (119 3) 716 Różnica między wartościami 716 - 121.3333 (1 2 3) -11.9999 Wartość1 RóżnicaRatio -11.99992 -5.9999 Wartość2 Wartość średnia - wartość1 121.3333 - (-5.9999) 2 133.3333 Prognoza 4 (-5.9999 ) 133.3333 109.3333 A.8.3 Procent dokładności Obliczenie POA (135.33 102.33 109.33) (114 119 137) 100 93.78 A.8.4 Średni odchylenie bezwzględne MAD (135.33 - 114 102.33 - 119 109.33 - 137) 3 21.88 A.9 Metoda 7 - Secon d Approximation (regresja) Regresja liniowa określa wartości dla a i b w projekcie prognozy Y a bX w celu dopasowania prostej linii do danych historii sprzedaży. Podejście drugiego stopnia jest podobne. Jednakże ta metoda określa wartości dla a, b i c w projekcie prognozy Y a bX cX2 w celu dopasowania krzywej do historii historii sprzedaży. Ta metoda może być użyteczna, gdy produkt znajduje się w przejściu między etapami cyklu życiowego. Na przykład, gdy nowy produkt przejdzie od etapu wprowadzania do etapu wzrostu, tendencja sprzedaży może przyspieszyć. Z powodu drugiego rzędu, prognoza może szybko podchodzić do nieskończoności lub spada do zera (w zależności od tego, czy współczynnik c jest dodatni czy ujemny). Dlatego ta metoda jest użyteczna tylko w krótkim okresie czasu. Specyfikacja prognozy: Wzory określają a, b i c, aby dopasować krzywą dokładnie do trzech punktów. W opcji przetwarzania 7a określasz n, liczbę okresów gromadzenia danych w każdym z trzech punktów. W tym przykładzie n 3. W związku z tym rzeczywiste dane o sprzedaży od kwietnia do czerwca są połączone w pierwszym punkcie, Q1. Od lipca do września dodaje się razem, aby utworzyć Q2, a od października do grudnia suma do trzeciego kwartału. Krzywa zostanie dopasowana do trzech wartości Q1, Q2 i Q3. Wymagana historia sprzedaży: 3 n okresy obliczania prognozy plus liczba okresów potrzebnych do oceny prognozy (PBF). Liczba okresów uwzględnienia (opcja przetwarzania 7a) 3 w tym przykładzie Użyj poprzednich (3 n) miesięcy w blokach trzymiesięcznych: Q1 (kwiecień - czerwiec) 125 122 137 384 Q2 (lip - wrz) 129 140 131 400 Q3 ( Oct-Dec) 114 119 137 370 Następny krok polega na obliczeniu trzech współczynników a, b i c do wykorzystania w projekcie prognozowania Y a bX cX2 (1) Q1 a bX cX2 (gdzie X1) abc (2) Q2 a równanie (1) z równania (2) jest równe (2), a b c c2 (gdzie X 2) a 2b 4c (3) Q3 a bX cX2 (gdzie X3) a 3b 9c Rozwiąż trzy równania jednocześnie, i rozwiązać dla b (2) - (1) Q2 - Q1 b 3c Zamień to równanie dla b na równanie (3) (3) Q3 a 3 (Q2-Q1) - 3c c Na koniec zastąpić te równania dla aib (Q2 - Q1) - 3c c Q1 c (Q3 - Q2) (Q1 - Q2) 2 Metoda przybliżania drugiego stopnia oblicza a, b i c następująco: Q3 (Q1 - Q2) 2 (370 - 400) (384 - 400) 2 (370 - 400) -23 b (Q2-Q1) -3c (400-384) - (3 -23) 85 Y a bX cX2 322 85X (-23) X2 styczeń do marca Prognoza marcowa (X4): (322 340 - 368) 3 2943 98 za okres od kwietnia do czerwca prognoza (X5): (322 425 - 575) 3 57.333 lub 57 za okres od lipca do września (X6): (322 510 - 828) 3 1,33 lub 1 za okres od października do grudnia (X7) (322 595 - 11273 -70 A.9.2 Symulowana prognoza Obliczanie października, listopada i grudnia 2004 r. SprzedaŜ: Q1 (Jan - Mar) 360 Q2 (kwiecień - czerwiec) 384 Q3 (lip - wrzesień) 400 a 400 - 3 (384 - 360) 328 c (400 - 384) (360 - 384) 2 -4 b (384 - 360) - 3 (-4) 36 328 36 4 (-4) 163 136 A.9.3 Procent dokładności Obliczanie POA (136 136 136) (114 119 137) 100 110,27 A.9.4 Średnia obliczalność odchylenia bezwzględnego MAD (136 - 114 136 - 119 136 - 137) 3 13.33 A.10 Metoda 8 - Metoda elastyczna Metoda elastyczna (Procent powyżej n miesięcy poprzednich) jest podobna do metody 1, w procentach w zeszłym roku. Obydwa metody pomnożają dane o sprzedaży od poprzedniego okresu przez określony przez użytkownika czynnik, a następnie projektują, które skutkują w przyszłości. Procent oparty na ostatnim rocznym projekcji opiera się na danych z tego samego okresu w roku poprzednim. Metoda Elastyczność dodaje możliwość określania innego okresu poza tym samym okresem roku ubiegłego, co podstawę obliczeń. Mnożnik. Na przykład określ opcję 1.15 w opcji przetwarzania 8b, aby zwiększyć poprzednie dane dotyczące historii sprzedaży o 15. Okres bazowy. Na przykład n 3 spowoduje, że pierwsza prognoza zostanie oparta na danych o sprzedaży w październiku 2005 roku. Minimalna historia sprzedaży: określona przez użytkownika liczba okresów powrotu do okresu bazowego plus liczba okresów potrzebnych do oceny prognozy ( PBF). A.10.4 Średnia obliczalność odchylenia bezwzględnego MAD (148 - 114 161 - 119 151 - 137) 3 30 A.11 Metoda 9 - średnia ważona Średnia Średnia Średnia Średnia (WMA) jest podobna do metody 4, Moving Average (MA). Jednak przy średniej ważonej ruchomej można przypisać nierówne wagi do danych historycznych. Metoda oblicza średnią ważoną z ostatnich historii sprzedaży, aby osiągnąć prognozę na najbliższy okres. Dalsze dane są zwykle przypisywane większej wagi niż starsze dane, dzięki czemu WMA reaguje na zmiany poziomu sprzedaży. Jednak prognozowane nastawienia i systematyczne błędy nadal występują, gdy historia sprzedaży produktów wykazuje silny trend lub sezonowe wzorce. Metoda ta lepiej sprawdza się w przypadku prognoz krótkoterminowych produktów dojrzałych, a nie na produkty w fazie wzrostu lub starzenia się cyklu życiowego. n liczba okresów historii sprzedaży do wykorzystania w kalkulacji prognozy. Na przykład określić opcję n 3 w opcji przetwarzania 9a, aby wykorzystać trzy ostatnie okresy jako podstawę projekcji do następnego okresu. Duża wartość n (np. 12) wymaga większej historii sprzedaży. Prowadzi to do stabilnej prognozy, ale będzie powolna rozpoznawać zmiany poziomu sprzedaży. Z drugiej strony mała wartość dla n (np. 3) reaguje szybciej na zmiany poziomu sprzedaży, ale prognoza może wahać się tak bardzo, że produkcja nie może odpowiadać na zmiany. Masa przypisana do każdego z historycznych okresów danych. Przyznane ciężary muszą wynosić 1,00. Na przykład, gdy n 3, przypisać ciężary 0,6, 0,3 i 0,1, przy czym najnowsze dane otrzymują największą wagę. Minimalna wymagana historia sprzedaży: n plus liczba okresów potrzebnych do oceny prognozy (PBF). MAD (133.5 - 114 121.7 - 119 118.7 - 137) 3 13.5 A.12 Metoda 10 - Wygładzanie liniowe Ta metoda jest podobna do metody 9, ważonej średniej przemieszczania (WMA). Jednak zamiast arbitralnie przyporządkować odważniki do danych historycznych, formułę stosuje się do przypisania odważników, które spadają liniowo i sumują się do 1,00. Metoda następnie oblicza średnią ważoną z ostatnich historii sprzedaży, aby osiągnąć prognozę na krótką metę. Podobnie jak w przypadku wszystkich liniowych średnich kroczących technik prognozowania, prognozowane nastawienia i błędy systematyczne występują, jeśli historia sprzedaży produktów wykazuje silny trend lub sezonowe wzorce. Metoda ta lepiej sprawdza się w przypadku prognoz krótkoterminowych produktów dojrzałych, a nie na produkty w fazie wzrostu lub starzenia się cyklu życiowego. n liczba okresów historii sprzedaży do wykorzystania w kalkulacji prognozy. Jest to określone w opcji przetwarzania 10a. Na przykład podaj n 3 w opcji przetwarzania 10b, aby wykorzystać najnowsze trzy okresy jako podstawę projekcji do następnego okresu. System automatycznie przypisa wagi do danych historycznych, które spadają liniowo i wynoszą 1,00. Na przykład, gdy n 3, system przypisze wagi 0,5, 0,3333 i 0,1, przy czym najstarsze dane otrzymują największą wagę. Minimalna wymagana historia sprzedaży: n plus liczba okresów potrzebnych do oceny prognozy (PBF). A.12.1 Prognoza Obliczanie Liczba okresów uwzględniających średnią wygładzania (opcja przetwarzania 10a) 3 w tym przykładzie Stosunek dla jednego okresu poprzedzającego 3 (n2 n) 2 3 (32 3) 2 36 0,5 Współczynnik dla dwóch okresów poprzedzających 2 (n2 n ) 2 2 (32 3) 2 26 0.3333 .. Współczynnik dla trzech okresów poprzedzających 1 (n 2 n) 2 1 (32 3) 2 16 0.1666 .. Prognoza stycznia: 137 0.5 119 13 114 16 127.16 lub 127 Luty prognoza: 127 0.5 137 13 119 16 129 Prognoza marcowa: 129 0.5 127 13 137 16 129.666 lub 130 A.12.2 Symulowana prognoza Obliczenia Sprzedaż w październiku 2004 r. 129 16 140 26 131 36 133.6666 listopad 2004 r. Sprzedaż 140 16 131 26 114 36 124 grudnia 2004 r. Sprzedaż 131 16 114 26 119 36 119.3333 A.12.3 Procent dokładności Obliczenie POA (133.6666 124 119.3333) (114 119 137) 100 101.891 A.12.4 Średni odchylenie bezwzględne MAD (133.6666 - 114 124 - 119 119.3333 - 137) 3 14.1111 A.13 Metoda 11 - Wyrównywanie wykładnicze Metoda ta jest podobna do metody 10, Wygładzanie liniowe. W wyrównywaniu liniowym system przypisuje wagi danych historycznych, które spadają liniowo. W wyrównywaniu wykładniczym system przypisuje odważniki, które rozkładają się wykładniczo. Wyrażenie predykcyjne równa jest: Prognoza a (poprzednia faktyczna sprzedaż) (1 - a) Poprzednia prognoza Prognoza jest średnią ważoną rzeczywistej sprzedaży z poprzedniego okresu i prognozy z poprzedniego okresu. a jest wagą stosowaną do rzeczywistej sprzedaży za poprzedni okres. (1 - a) jest wagą zastosowaną do prognozy dla poprzedniego okresu. Prawidłowe wartości w zakresie od 0 do 1, i zwykle mieszczą się w zakresie od 0,1 do 0,4. Suma ciężarów wynosi 1,00. a (1 - a) 1 Należy przypisać wartość dla stałej wygładzania, a. Jeśli nie ustawisz wartości dla stałej wygładzania, system oblicza założoną wartość w oparciu o liczbę okresów historii sprzedaży określoną w opcji przetwarzania 11a. stała wygładzania używana do obliczania średniej wygładzonej dla ogólnego poziomu lub wielkości sprzedaży. Poprawne wartości w zakresie od 0 do 1. n zakresu danych historii sprzedaży, które mają zostać uwzględnione w obliczeniach. Ogólnie, jeden rok danych dotyczących historii sprzedaży jest wystarczający, aby oszacować ogólny poziom sprzedaży. W tym przykładzie wybrano małą wartość dla n (n 3) w celu zredukowania ręcznych obliczeń wymaganych do sprawdzenia wyników. Wyrównywanie wykładnicze może wygenerować prognozę na podstawie zaledwie jednego historycznego punktu danych. Minimalna wymagana historia sprzedaży: n plus liczba okresów potrzebnych do oceny prognozy (PBF). A.13.1 Prognoza Obliczanie Liczba okresów uwzględnienia w średniej wygładzania (opcja przetwarzania 11a) 3 oraz współczynnik alfa (opcja przetwarzania 11b) w tym przykładzie jest pustym elementem najstarszych danych handlowych 2 (11) lub 1, gdy alfa jest określony współczynnik 2 najstarszych danych handlowych 2 (12) lub alfa, gdy alfa jest określony jako współczynnik trzeciej najstarszej sprzedaży 2 (13) lub alfa, gdy alfa jest określony współczynnikiem dla ostatnich danych sprzedaży 2 (1n) , lub alfa, gdy alfa jest określony listopad Sm. Średnia a (Październik Rzeczywisty) (1 - a) Październik Sm. Średnia 1 114 0 0 114 grudzień Sm. Średnia a (Listopad Rzeczywisty) (1 - a) Listopad Sm. Średnia 23 119 13 114 117.3333 Styczeń Prognoza a (grudzień Aktualne) (1 - a) Grudzień Sm. Średnia 24 137 24 117.3333 127.16665 lub 127 Luty Prognoza Styczeń Prognoza 127 Marzec Prognoza Styczeń Prognoza 127 A.13.2 Symulowana Prognoza Obliczanie Lipiec 2004 Sm. Średnia 22 129 129 sierpnia Sm. Średnia 23 140 13 129 136.3333 Wrzesień Sm. Średnia 24 131 24 136.3333 133.6666 Październik, 2004 sprzedaŜ Wrz. Sm. Średnia 133.6666 Sierpień, 2004 Sm. Średnia 22 140 140 września Sm. Średnia 23 131 13 140 134 października Sm. Średnia 24 114 24 134 124 listopad, 2004 sprzedaże Wt. Średnia 124 września 2004 Sm. Średnia 22 131 131 października Sm. Średnia 23 114 13 131 119.6666 Listopad Sm. Średnia 24 119 24 119.6666 119.3333 Sprzedaż w grudniu 2004 r. Wrz. Średnia 119.3333 A.13.3 Procent obliczenia dokładności POA (133.6666 124 119.3333) (114 119 137) 100 101.891 A.13.4 Średnia obliczalność odchylenia bezwzględnego MAD (133.6666 - 114 124 - 119 119.3333 - 137) 3 14.1111 A.14 Metoda 12 - wyrównywanie wykładnicze z tendencją i sezonowością Ta metoda jest podobna do metody 11, Exponential Smoothing, która wylicza średnią wygładzoną. Metoda 12 zawiera jednak również termin w równaniu prognozującym do wyliczenia wygładzonej tendencji. Prognoza składa się ze średniej wygładzonej dostosowanej do tendencji liniowej. Jeśli określono w opcji przetwarzania, prognoza jest również dostosowywana do sezonowości. stała wygładzania używana do obliczania średniej wygładzonej dla ogólnego poziomu lub wielkości sprzedaży. Prawidłowe wartości zakresu alfa wynoszą od 0 do 1. b stała wygładzania używana do obliczania średniej wygładzonej dla składnika tendencji prognozy. Prawidłowe wartości dla zakresu beta od 0 do 1. Niezależnie od tego, czy indeks sezonowy jest stosowany do prognozy a i b. Nie muszą dodawać do 1.0. Minimalna wymagana historia sprzedaży: dwa lata plus liczba okresów potrzebnych do oceny prognozy (PBF). Metoda 12 wykorzystuje dwa równania wyrównania wykładniczego i jedną prostą średnią do obliczania średniej wygładzonej, wygładzonej tendencji i prostego średniego czynnika sezonowego. A.14.1 Kalkulacja prognozy A) Wyraźna geometrycznie średnia wartość MAD (122.81 - 114 133.14 - 119 135.33 - 137) 3 8.2 A.15 Ocena prognoz Możesz wybrać metody prognozowania, aby wygenerować aż dwanaście prognoz dla każdego produktu. Każda metoda prognozowania prawdopodobnie utworzy nieco inną projekcję. Gdy przewidziano tysiące produktów, trudno jest podjąć subiektywną decyzję co do tego, które z prognoz użyć w planach każdego z produktów. System automatycznie ocenia wydajność każdego wybranego sposobu prognozowania i dla każdego z produktów. Możesz wybrać jeden z dwóch kryteriów wydajności, średniego odchylenia bezwzględnego (MAD) i procentu dokładności (POA). MAD jest miarą błędu prognozy. POA jest miarą przewidywanego nastawienia. Obie te techniki oceny skuteczności wymagają rzeczywistych danych dotyczących historii sprzedaży dla określonego przez użytkownika okresu. Ten okres najnowszej historii zwany jest okresem holdout lub period best fit (PBF). Aby zmierzyć skuteczność metody prognozowania, użyj prognozowych formuł do symulacji prognozy na historyczny okres utrzymywania rezerwy. Zwykle występują różnice między rzeczywistymi danymi dotyczącymi sprzedaży a symulowaną prognozą dla okresu utrzymywania rezerwy. Gdy wybrano wiele metod prognozy, ten sam proces występuje dla każdej metody. Wiele prognoz jest obliczanych w okresie holdout i porównywane do znanych historii sprzedaży w tym samym okresie czasu. Zalecana jest metoda prognozowania, która najlepiej pasuje pomiędzy prognozą a rzeczywistą sprzedażą w okresie zawieszenia, do wykorzystania w planach. To zalecenie jest specyficzne dla każdego produktu i może zmieniać się z jednego generowania prognozy na drugie. A.16 Średnie odchylenie bezwzględne (MAD) MAD jest średnią (lub średnią) wartości bezwzględnych (lub wielkości) odchyleń (lub błędów) pomiędzy rzeczywistymi i prognozowanymi danymi. MAD jest miarą średniej wielkości błędów oczekiwanych, biorąc pod uwagę metodę prognozowania i historię danych. Ponieważ w obliczaniu są stosowane wartości bezwzględne, błędy dodatnie nie eliminują błędów negatywnych. W porównaniu z kilkoma metodami prognozowania, ten z najmniejszym MAD okazał się być najbardziej niezawodny dla tego produktu w tym okresie utrzymywania. Jeśli prognoza jest bezstronna, a błędy są rozproszone, istnieje prosty związek matematyczny pomiędzy MAD a dwoma innymi wspólnymi miarami dystrybucji, odchylenia standardowego i średniego kwadratu: A.16.1 Procent dokładności (POA) Procent dokładności (POA) jest miara prognozowania. Kiedy prognozy są zbyt wysokie, gromadzone są zapasy i koszty zapasów wzrastają. Kiedy prognozy są konsekwentnie dwa niskie, zapasy są konsumowane, a obsługa klienta spada. Prognoza, która wynosi 10 jednostek za niska, a następnie 8 jednostek za wysoka, a następnie 2 jednostki za wysoka, byłoby nieprzewidywalną prognozą. Błąd dodatni wynoszący 10 jest anulowany przez błędy ujemne w wysokości 8 i 2. Błąd Stan faktyczny - prognoza Kiedy produkt można przechowywać w magazynie, a gdy prognoza jest bezstronna, można zastosować niewielką ilość zapasów bezpieczeństwa, aby buforować błędy. W tej sytuacji nie jest tak ważne, aby wyeliminować błędy prognozy, ponieważ ma generować nieprzewidywalne prognozy. Jednakże w przemyśle usługowym powyższa sytuacja byłaby postrzegana jako trzy błędy. W pierwszym okresie służby byłyby niewystarczające, a następnie przez wiele kolejnych okresów. W usługach, wielkość błędów prognozy jest zazwyczaj ważniejsza niż przewidywana tendencja. Podsumowanie w okresie holdoutu pozwala na pozytywne błędy w celu wyeliminowania negatywnych błędów. Gdy całkowita sprzedaż przekracza całkowitą prognozę sprzedaży, współczynnik ten jest większy niż 100. Oczywiście, nie da się dokładnie określić dokładności 100. Jeśli prognoza jest bezstronna, współczynnik POA wynosi 100. Dlatego też bardziej pożądane jest 95 dokładne, niż dokładne 110. Kryteria POA wybierają metodę prognozowania, która ma współczynnik POA najbliższy 100. Skryptowanie na tej stronie ulepsza nawigację treści, ale w żaden sposób nie zmienia zawartości. MPR2 - Prognozowanie zapotrzebowania Typ prognozowania, który wykorzystuje stowarzyszenia przyczynowo-skutkowe do przewidywania i wyjaśnienia zależności pomiędzy zmiennymi niezależnymi a zależnymi. Przykładem modelu przyczynowego jest model ekonometryczny służący do wyjaśnienia zapotrzebowania na budowę mieszkań w oparciu o bazę klientów, stopy procentowe, dochody osobiste oraz dostępność gruntów. CPFR (planowanie współpracy, prognozowanie uzupełniania wzmacniaczy) Proces współpracy, w ramach którego partnerzy z łańcuchem dostaw mogą wspólnie zaplanować kluczowe działania w zakresie łańcucha dostaw od produkcji i dostarczania surowców do produkcji i dostarczania produktów końcowych klientom końcowym. Współpraca obejmuje planowanie biznesowe, prognozy sprzedaży i wszystkie operacje wymagane do uzupełnienia surowców i wyrobów gotowych. W tym artykule opisano techniki prognozowania, które wykorzystują proste i ważone modele średnie ruchome w serii czasowej. Opisuje także stosowanie średniego podejścia odchylenia bezwzględnego w celu określenia, który z tych modeli daje dokładniejsze przewidywanie. Tło Średniometr jest bardzo popularną techniką prognozowania szeregów czasowych. Jest przydatna, gdy chcesz analizować zmienną (na przykład sprzedaż, uczestnicy seminarium, zwroty, konta itp.) Przez kilka kolejnych okresów, zwłaszcza jeśli nie ma innych danych, z którymi można przewidzieć wartość następnego okresu. Często lepiej jest korzystać z danych historycznych do prognozowania przyszłych wartości, a nie prostych szacunków. Średnie kroczące kompensują wahania krótkoterminowe i podkreślają długoterminowe trendy lub cykle. Zasadniczo średnie kroczące przewidują wartość następnego okresu, uśredniając wartość n poprzednich okresów. Prosta średnia ruchoma (SMA) Średnia średnia ruchoma jest średnią wartości w ciągu ostatnich n okresów. Liczba okresów, które należy analizować w średniej ruchomości, zależy od rodzaju ruchu, w którym jesteś zainteresowany. W poniższej formule poprzednie wartości n dla D są używane do obliczania prognozowanej wartości F dla okresu t1. Ważona średnia ruchoma (WMA) Czasami wartości z ostatnich miesięcy są bardziej wpływowe jako wskaźniki predykcyjne wartości na nadchodzący miesiąc, więc model powinien dać im większą wagę. Ten typ modelu jest znany jako ważona średnia ruchoma. Użyte obciążenie może być dowolne, jeśli suma wagi wynosi 1: Załóżmy, że firma farmaceutyczna chce przewidzieć zapotrzebowanie na najpopularniejszy lek, aby upewnić się, że w nadchodzącym miesiącu mają wystarczającą ilość zapasów na zamówienia. Aby pomóc firmie w sformułowaniu dokładnej prognozy, menedżer ds. Planowania popytu analizuje 3-miesięczną średnią ruchową, ponieważ popyt może wahać się znacznie od ponad jednej czwartej. Najpierw obliczamy przewidywaną wartość przy użyciu zarówno technik SMA, jak i WMA. Następnie opracowujemy model i oceniamy, która technika daje dokładniejszą prognozę. Popyt (SMA) WYBIERZ ((WYBIERANIE WYMAGANIA (Suma) DO POPRZEDNIEGO (Miesiąc Rok (Daty zapotrzebowania), 1)) (WYBIERZ ZADANIE (Suma) DO POPRZEDNIEGO (Miesiąc Rok (Daty zapotrzebowania), 2)) (WYBIERZ PODCZAS (MonthYear (Data zapotrzebowania), 3))) 3 Zauważ, że użyliśmy klauzuli FOR PREVIOUS dla sumy zapotrzebowania z ostatnich trzech okresów. Po podaniu wartości zapotrzebowania na ostatnie trzy okresy możemy podzielić sumę o 3 na obliczanie średniej. Popyt (WMA) Aby obliczyć zapotrzebowanie przy użyciu WMA, podajemy wagę 3 do ostatniego okresu, waga 2 do następnego ostatniego okresu, a wagę 1 do następnego ostatniego okresu. Należy zauważyć, że stosunek tych wartości wynosi 50: 33: 17, co odpowiada wymaganiu, aby suma wagi równa 1. WYBIERZ (0.5 (WYBIERANIE ZADANIA (Suma) DO POPRZEDNIEJ (Miesiąc Rok (Daty zapotrzebowania), 1))) (0.33 ( SELECT Żądanie (Suma) DO POPRZEDNIEJ (miesiąc Lata (Daty zapotrzebowania), 2))) (0,17 (WYBIERANIE ZADANIA (Suma) DO POPRZEDNIEJ (Miesiąc Rok (Daty zapotrzebowania), 3))) Dzielenie tych danych przez MonthYear daje następujący pogląd: że w bieżącym miesiącu jest kwiecień 2017 r., otrzymamy dwie wartości na popyt w maju 2017 r .: jedna SMA i jedna MWA. Teraz sprawdź, która z tych dwóch wartości jest dokładniejsza. Określenie dokładności modelu średniej ruchomości obliczającego średnie odchylenie bezwzględne (MAD) Zazwyczaj jakość modelu prognozowego jest mierzona przez jego margines błędu między rzeczywistymi a przewidywanymi wynikami, a wspólnym pomiarem dokładności prognozy jest średnie odchylenie bezwzględne (MAD) ). Dla każdej prognozowanej wartości w serii obliczamy wartość bezwzględną różnicy między rzeczywistymi i prognozowanymi wartościami (odchylenie). Następnie obliczymy te bezwzględne odchylenia w celu obliczenia MAD. MAD może nam pomóc w określeniu liczby przeciętnych okresów, wagi przypisania do każdego okresu lub obu. Model z najniższą wartością MAD jest zazwyczaj najlepszym wyborem. Pozwala obliczyć MAD dla dwóch modeli: Odchylenie odchylenia (SMA) (WMA)

No comments:

Post a Comment